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A simple statistical mechanical model based on pairwise interaction has been considered 
to obtain conditional probabilities for the occupation of neighbouring atoms in binary 
molten alloys. This has been extended to obtain simple analytical expressions for activity, 
free energy of mixing, concentration fluctuations in long wave limit and the chemical 
short range order parameter. Application is made to compute ordering energy and the 
concentration dependent thermodynamic properties for CuPb, NaK, LiMg and CdMg. 
The study reveals that self coordination among nearest neighbour atoms exist in CuPb 
and NaK whereas heterocoordination exist in LiMg and CdMg. 

Key Words: Activity, concentration fluctuations, ordering energy. 

1 INTRODUCTION 

In recent years a great interest has been shown towards obtaining the 
microscopic properties of binary molten alloys from the knowledge of 
the bulk properties. Among others the recent work by Bhatia and 
Singhl-’ on compound forming molten alloys paves the way in the 
desired direction. In the background knowledge of the bulk thermodyn- 
amic functions like activity and free energy of mixing, they have 
obtained very interesting information on chemical short range order 
(SRO) and concentration fluctuations in the long wave limit, S,,(O), in 
binary molten alloys. The necessity and the importance of SRO and 
S,,(O) in binary molten alloys have been greatly emphasized in the 
recent reviews by March et ~ l . , ~  Chieux and Rupper~berg,~ Steeb et al.’ 
and Singh.6 These quantities are of immense help to understand the 
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304 R. N. SINGH AND I. K. MISHRA 

phase separation and the extent of local order in binary molten alloys. 
The phenomenon like metallic glass formation of which is achieved by 
quenching the molten state of binary alloys is also being understood7-' 
at the cost of SRO and S,,(O). The quantitative knowledge of the local 
order, which is measured through SRO, is also warranted9-" to 
explain the electronic transport in binary alloys. But the information on 
SRO, both theoretically and experimentally, is limited only to few 
systems.'j 

Thus in the present work we use a simple theory based on statistical 
mechanical model to compute the conditional probabilities in simple 
binary alloys. These are then used to compute the Warren-Cowley' '-12 

short range order parameter as a function of composition. It has been 
shown that the conditional probabilities are intimately related to the 
activity through the ordering energy. The method has been extended to 
compute the free energy of mixing and Scc(0). Application is made to 
CuPb, NaK, LiMg and CdMg. These alloys have been preferred 
because each of them represents a class of characteristic equilibrium 
phase diagram. The study reveals that there is a preference for like 
atoms pairing as nearest neighbour in CuPb and NaK for all composi- 
tions. Heterocoordination however exists in LiMg and CdMg melts. In 
Section 2, the basic relations between the conditional probability and 
the partition function have been established. A connection of the 
conditional probabilities to the thermodynamic functions has been 
made in Section 3. Results for SRO and activity are presented in 
Section 4. Finally in Section 5,  the results for free energy of mixing and 
S,,(O) are discussed. 

2 CONDITIONAL PROBABILITY AND THE PARTITION 
FU N CTl ON 

Consider a binary alloy consisting of A and B atoms in the proportions 
c and (1 - c) respectively. The conditional probability (AIB), which 
denotes the probability of finding A atoms as a nearest neighbour of a 
given B atom, is related to Warren-Cowley"-12 short range order 
parameter (al) for the first coordination shell as 

( A / B )  = c(l - El). 

( B / A )  = (1 - c)(l - El). 

(1) 

Similarly (B /A)  is given by 

(2) 
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THERMODYNAMICS OF BINARY ALLOYS 305 

Obviously, 

c(B/A)  = (1 - c)(A/B). (3) 
From a simple probabilistic approach the limiting values of a l  can 
easily be shown to lie in the range, 

For equiatomic composition (c = 0.5) one has - 1 -< a, I 1. The 
minimum possible values of CI, i.e. a?” = - 1, means complete ordering 
as A-B pairs of atoms as nearest neighbour, whereas a? = 1 suggests 
total segregation leading to the formation of A-A pairs or B-B pairs in 
the alloy. 

In order to evaluate the conditional probability we first write the 
grand partition function for the binary alloy as 

= 1 d ” ( T > q ? ( T ) e ( p A  N,4 + P E  N B  - E ) / k B  ( 5 )  

Where N ,  and N ,  are the number of A and B atoms in the alloy with 
the configurational energy E. p i  are the chemical potentials and qi(T) 
are partition functions associated with inner and translational degrees 
of freedom of atoms i ( i  = A,  B). 

Now to define the configurational energy E explicitly, we follow the 
work of Cartier and BarriolI3 and Bhatia and Singh.’ The atoms of two 
different species are supposed to be located on lattice sites-few nearest 
neighbour lattice sites are assumed to be located in domain 1 and the 
rest in domain 2. The atoms are so distributed that N ,  = N,, + N,, ,  
N ,  = N , ,  + N , ,  and E = E ,  + E ,  + El, where Ei (i = 1,2) are the 
configurational energies of domain i. El, takes into account of the 
interaction between atoms of domain 1 and 2. The simplified version 
like this enables us to write down the grand partition function as the 
product of the partition functions of the two domains (i.e. E = Sl . E,). 
The grand partition function for domain 1 becomes 

E 

where 

P C L  B 
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306 R. N. SINGH AND I. K. MISHRA 

and a similar expression exists for Ez . EI2/KB T is the average energy of 
interaction through which atoms of domain 1 interact with the rest of 
the atoms of domain 2. Instead of making a rigorous approach, we 
resort to a simple approximation for El, as in Fowler and 
G~ggenheim'~ i.e. - 

x oy4p (8) - Ex i / k a T  

where # A  and (bB are constants. 2, are the number of lattice sites in 
domain 2 which are the nearest neighbours of A atoms located in the 
domain 1 and similarly Z,. Thus Eq. (6) becomes 

(9) El = C ,KKiA,$is4p4pe-Ei/kaT 
Ei 

Sl for just one lattice site in domain 1 readily reduces to 

(10) .;.(I) = t 42 -1 A A + , K B 4 ;  

and for two lattice sites, one obtains 

where 

Where 2 is the coordination number and cij are the energies of i - j 
bonds. By employing Eq. (1 1) we can immediately express the probabi- 
lity that the two neighbouring lattice sites are occupied by unlike atoms 
i.e. 

(A ,  B)  = (B, A )  = 5!! E p  

and similarly 
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THERMODYNAMICS OF BINARY ALLOYS 307 

It should also be noted that the probabilities (A, B), (A, A) and (8, B) 
are related to the conditional probabilities (AIE), ( A / A )  and (BIB) 
through the relations, 

( A ,  B )  = c(B/A); ( B / A )  = (1 - c) (A/B)  (184 
( A ,  A )  = c (A/A)  (18b) 
(4 B )  = (1 - c)(B/B) (184 

Also one has 

A / B  + B/B = 1 

and 

A / A  + B/A = 1 

Equations (15) to (19) yield 

- 
( B / A ) - '  = 1 + + 

=AB 

In the following section, we shall see that Sij can be expressed in 
terms of energies of the pairwise interaction of atoms A and B. 

3 CONNECTION OF CONDITIONAL PROBABILITIES TO THE 
THERMODYNAMIC FUNCTIONS 

We first note the standard thermodynamic relations for the chemical 
potentials p A  and p, of the two component elements A and B in the 
binary mixture, 

where uA and Q, are activities of components A and B in the alloy, p: 
and p i  are chemical potentials of pure species A and B. By making use 
of the partition function and Eq. (22) we readily obtain 

p: = - k, T In q A (  T) + 3 2 ~ ~ ~  
p i  = - k, T In qB(T) + f Z E B B  

(234 
(23b) 
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Equations (22), (23) and ( 7 )  further yield 

R. N. SINGH AND I. K. MISHRA 

In order to eliminate tB/tA from Eq. (24) we recall expression ( 9 )  for El. 
Average values of A and B atoms in the inner domain can be expressed 
as 

On substituting Eqs (10) and ( 1 1 )  to Eq. (26), we obtain 

By setting 

Equations (27)  and (28) provide 

where o = z ( E A B  - (eAA + &B&} is usually called the interchange 
energy or ordering energy for the alloy. The valid solution of the 
quadratic expression (30) gives the working expression for a i.e. 
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THERMODYNAMICS OF BINARY ALLOYS 309 

where 

8’ = 1 + 4 ~ ( l  - c)(v’ - 1) (33) 

(T can easily be calculated from Eq. (32) with the knowledge of the 
ordering energy o. Now by eliminating tB/tA from (24) with the help of 
Eqs (27) and (29), we obtain an expression for the activity ratio 
a( = aB/a,) i.e. 

Equation (34) can easily be used to obtain an analytic expression for the 
excess free energy of mixing, C$(C$ = G ,  - N k B T x i  ci In ci) by using 
the standard thermodynamic relation’ 

Equations (34) and (35) lead to 

With (T as in Eq. (32), the above equation is readily integrable (q has 
been considered independent of c) and one obtains just the same 
expression for G z  as given by Guggenheim.” For convenience we 
record it as 

The long wave length limit (q + 0) of the concentration fluctuation 
structure factor, S,,(O) is given by16 

Equations (37) and (38) yield 

SLt(0) = c(1 - c) is the concentration fluctuation of the ideal solution. 
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310 R. N. SINGH AND I. K. MISHRA 

The denominator of the equation (39), which depends upon the 
ordering energy o, brings the deviation from the ideal behaviour. As 
o + 0 [i.e. &AB = (cAA + &BB)/2], p + 1 and S,,(o) --+ SE(0). The recipro- 
cal of S,,(O) is also known as Darken” stability function. S,,(O) has been 

of 
liquid alloys. 

Lastly we furnish the expression for the short range order parameter. 
By substituting Eqs (27) and (29) into Eqs (20) and (21), the conditional 
probabilities emerge as, 

proved very useful to understand the microscopic behaviour4*’*-’ 

(40) 
1 

(AIB) = 
1 +- 1 - c c-1 e x p ( 0 )  

C Zk, T 

(41) 
1 

@ / A )  = 
C 1+- 

1 - c  

With the knowledge of the ordering energy (a), ( A / @  and (BIA) can 
easily be determined from Eqs (40) and (41). By virtue of Eqs (1) and (2) 
the above equations can also be expressed in terms of SRO (al) i.e. 

c(1 - c)(l dl - al)’ ) = exp(&) 

This is the desired relation between the short range order parameter 
and the ordering energy for the first shell. Though this relation is 
generalisable for higher shells, but for liquid alloys it suffices the 
purpose. Liquid alloys are known for its short range order. The 
structure factor measurementsz0 testifies it which exhibit only a well 
pronounced principal peak. Even the aagnitude of the second nearest 
peak is very much reduced than the first peak. 

It is interesting to note that a relation similar to Eq. (42) can also be 
obtained’ by following an entirely different approach of the pseudopo- 
tential method in second order perturbation theory. The Cowley ” and 
Clapp and Moss” expressions for the short range order for the first 
shell also reduce to the equation of the form (42). 

The success of the Eq. (42) for the determination of SRO as a function 
of composition depends upon the true knowledge of the ordering 
energy o. The latter can be determined from the first principle by using 
pairwise interaction of the pseudopotential me th~d’~- ’~  but very little 
work has been done in this direction. Contrary to this o can also be 
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THERMODYNAMICS OF BINARY ALLOYS 311 

Table 1 Ordering energy (o), excess free energy of mixing (Cxs), 
concentration fluctuations, S,,(O), and short range order parameter (al) 
at T = T,  for simple lattice structure. 

Simple Cubic 
(2 = 6) 2.432 0.5469 9.3 x 105 0.19 
bcc 
( Z  = 8) 2.301 0.5341 3.3 x 104 0.14 
fcc 
(2 = 12) 2.187 0.5220 a3 0.09 

determined very easily from the observed activity data or from the free 
energy of mixing. For example, Eq. (37) for C = reduces to 

GZ -- 
N k ,  T (43) 

Thus Eq. (43) determines the ordering energy w. Before we enter into 
the application to real systems, it is of interest to shed some light on the 
role of ordering energy on phase separation. For alloys where size 
difference is prominent, it has recently been pointed out2’ that both the 
ordering energy and the size effect jointly control the phase separation. 
But for binary alloys whose constituent elemental atoms are approxi- 
mately of the same size, the condition of critical mixing for equiatomic 
composition is givenI5 by 

w Z 
-=Zln- 
k,  T,  2 - 2  (44) 

T,  is the temperature of critical mixing above which the alloy remains 
in one phase and below the critical temperature it separates into two 
phases. The values obtained for ordering energy, excess free energy of 
mixing, concentration fluctuations and the short range order parameter 
at T = T, for simple lattice structures are tabulated in Table 1. It is 
obvious that concentration fluctuation becomes exorbitantly high at 
T =  T,. 

4 NUMERICAL VALUES OF THE SHORT RANGE ORDER 
AND ACTIVITY 

The various expressions developed in the previous section are utilized 
here to compute the concentration dependence of the conditional 
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Table 2 Coordination number (Z) 
and the ordering energy (0). 

Alloys T("K) Z o(eV) 

CuPb 1473 12 0.2264 
KNa 384 12 0.0328 
CdMg 923 12 -0.1871 
LiMg 887 10 -0.0764 

probabilities ( A / B  or B / A ) ,  activity (a = uB/uA) and the short range 
order (a1) for CuPb, NaK, CdMg and LiMg liquid alloys. The 
co-ordination number ( Z )  and the ordering energy (w)  used for 
different systems are tabulated in Table 2. At the out-set it should be 
emphasized that o and Z are considered here independent of concen- 
tration. Though Z for liquid alloys can be determined from the 
number-number structure factor, S,,(q), introduced by Bhatia and 
Thornton,I6 but very little progress has been made in this direction. 
Usually, in liquid alloys, Z varies' from 8 to 12. For want of better 
knowledge we take 2 = 12 for CuPb, NaK, CdMg and Z = 10 for 
LiMg. During our investigation we have found that any other choice of 
Z modifies our results only slightly. 

CuPb Liquid Alloys 

The conditional probabilities, activity ratio and the short range order 
parameter for CuPb liquid alloys are tabulated in Table 3. The com- 
puted values of the activity ratio are in very good agreement with the 

Table 3 Conditional probability (A/& B/A) ,  activity ratio 
(aa/aA), and short range order parameter (a,) for CuPb 
alloys at T = 1473°K. (A = Cu, B 3 Pb). 

cA ( A I B )  ( B / A )  Activity ratio S.R.O. 
a = (ae/aA) a1 

Theory Expt.26 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.8735 
0.7600 
0.6554 
0.5570 
0.4629 
0.3713 

9.1899 
0.0971 

0.2809 

0.097 1 
0.1900 
0.2809 
0.3713 
0.4629 
0.5570 
0.6554 
0.7600 
0.8735 

2.246 
1.443 
1.193 
1.076 
I .ooo 
0.930 

0.693 
0.445 

0.838 

2.187 0.029 
1.352 0.05 
1.218 0.064 
1.150 0.072 
0.962 0.074 
0.988 0.072 
0.864 0.064 
0.680 0.05 
0.405 0.029 
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THERMODYNAMICS OF BINARY ALLOYS 313 

experimental observation26 at all concentrations. The short range order 
parameter (a1) is positive throughout. This indicates segregation of 
preference for like atoms pairing as nearest neighbour in the alloy. 
CuPb liquid alloys belongs to monotectic system which is well known 
for the existence of miscibility gap in the liquid state. The computed 
values of a1 supports the above fact. We shall see later that the 
computed values of S,,(O) strongly indicates the existence of miscibility 
gap in the liquid state. 

NaK Liquid Alloys: 

The results for NaK liquid alloys are tabulated in Table 4. The present 
values of the activity ratio agree well with the observed values.26 The 
values of a1 for NaK liquid alloys are also positive at every composi- 
tion, which indicates the tendency of like atoms pairing in the first 
coordination shell but not as strong as in CuPb system. It may be noted 

Table 4 Conditional probability (A /B ,  B/A),  activity ratio 
(aB/aA) and short range order parameter ( a , )  for KNa 
alloys at T = 384°K. ( A  = k, B s Na). 

cA (A/B)  (B/A)  Activity ratio S.R.O. 
a = a1 

Theory Expt.16 

0.1 0.098 
0.2 0.195 
0.3 0.290 
0.4 0.384 
0.5 0.479 
0.6 0.576 
0.7 0.675 
0.8 0.778 
0.9 0.886 

0.886 
0.778 
0.675 
0.576 
0.479 
0.384 
0.289 
0.195 
0.098 

4.117 
2.241 
1.590 
1.239 
1.OOO 
0.807 
0.630 
0.446 
0.243 

4.299 
2.251 
1.560 
1.198 
0.965 
0.783 
0.619 
0.447 
0.248 

0.016 
0.027 
0.035 
0.040 
0.041 
0.040 
0.035 
0.027 
0.0 16 

that the values of a1 in CuPb liquid alloys are almost double than the 
NaK liquid alloys. The equilibrium phase diagram of NaK is in 
contrast to CuPb system. The former is a deep eutectic whereas the 
latter belongs to a monotectic system. In the following section, we shall 
see that Scc(0) for NaK is much smaller than the CuPb, but in either 
case it is greater than the ideal values. 

CdMg Liquid Alloys: 

Table 5 enlists the computed values of the conditional probabilities, 
activity ratio and the short range order parameter. The theoretical and 
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314 R. N. SINGH AND I. K. MISHRA 

Table 5 Conditional probability (A/B,  B/A),  activity ratio 
(as/aA) and short range order parameter (q) for CdMg 
alloys at T = 923°K. ( A  = Cd, B = Mg). 

c A  ( A / B ;  ( B / A )  Activity ratio S.R.O. 
a = (as/aA) a1 

Theory Expt.26 

0.1 0.9279 0.1031 62.971 59.133 
0.2 0.8465 0.2116 17.928 18.575 
0.3 0.7556 0.3238 6.481 6.621 
0.4 0.6558 0.4372 2.517 2.452 
0.5 0.5489 0.5489 1 . W  1.068 
0.6 0.4372 0.6558 0.397 0.367 
0.7 0.3238 0.7556 0.154 0.147 
0.8 0.2116 0.8465 0.056 0.057 
0.9 0.1031 0.9279 0.016 0.018 

-0.031 
- 0.058 
- 0.079 
-0.093 
-0.098 
-0.093 
-0.079 
-0.058 
-0.031 

observed valuesz6 of the activity ratio are in reasonable agreements. 
Some minor discrepancies exist for smaller contents of Cd in the alloy. 
With increasing concentration of Cd, the agreement improves signifi- 
cantly. CdMg liquid alloys behave differently than CuPb and NaK. The 
activity ratio in CdMg is much larger than CuPb or NaK. Unlike the 
latter systems, the short range order parameter in CdMg is negative at 
all concentrations. This indicates a preference for heterocoordination in 
the liquid phase. At this stage we may recall that the phase diagram of 
CdMg liquid alloys consists of a simple monotonous line, rising from 
Cd to Mg end. Boos and SteebZ7 have measured a, = -0.13 for 
Cd,,Mg,, liquid alloys at 823°K for 2 = 7. If we repeat our calculation 
for the same Z and T then we obtain a1 = -0.11 which is in good 
agreement with the experimental observation. The heterocoordination 
in CdMg liquid alloys is supported by Scc(0) values which are to be 
presented in the following section. 

LiMg Liquid Alloys: 

In recent years great interest has been shown in LiMg liquid alloys. The 
up to date experimental information on various physical and thermo- 
dynamical properties are well summarized in the work by Ruppersberg 
et dZ8 and Mare1 and Lugt.” The theoretical understanding of the 
alloying behaviour of LiMg melt has recently been discussed by Singh 
et aL3’ The basic thrust has been to examine the deviation from the 
ideal solution behaviour. Though the present work can not be consid- 
ered as a rigorous first principle theoretical approach, none the less it 
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Table 6 Conditional probability (A/& B/A), activity ratio 
(aE/aA) and short range order parameter (al) for LiMg alloys at 
T = 887°K. ( A  = Li, B s Mg). 

C A  ( A / B )  @ / A )  Activity ratio S.R.O. 
a = ( a E / a A )  a1 

Theory E ~ p t . ~ '  

0.101 0.9143 
0.238 0.7889 
0.357 0.6722 
0.466 0.5605 
0.541 0.4818 
0.594 0.4255 
0.646 0.3700 
0.67 0.3444 
0.702 0.3103 

0.1027 
0.2464 
0.3732 
0.4892 
0.5678 
0.6225 
0.6753 
0.6993 
0.7309 

20.0481 
5.5138 
2.4299 
1.2306 
0.7781 
0.5612 
0.4038 
0.3452 
0.2786 

24.021 
6.164 
2.874 
1.464 
0.841 
0.608 
0.437 
0.368 
0.288 

-0.0170 
-0.0353 
-0.0455 
- 0.0497 
-0.0496 
- 0.0480 
-0.0453 
-0.0437 
-0.0411 

shed some light on the local behaviour of the alloying elements. The 
computed values of the conditional probabilities, activity ratio and the 
short range order parameter for LiMg liquid alloys are given in Table 6. 
The choice of the concentrations in Table 6 is irregular because it helps 
to compare our results directly to the observed activity.31 Towards the 
Mg rich end the agreement between the theory and the experiment is 
very good but some discrepancies exist towards the Li-rich end. The 
activity ratio in LiMg is greater than CuPb and NaK, but less than 
CdMg liquid alloys. The short range order parameter is always negative 
and thereby indicates heterocoordination in the liquid phase. Our 
computed values of a,  = -0.05 for Li,,,Mgo.3 liquid alloys 
(T = 887°K) is in good agreement with a, = -0.035 (875°K) obtained 
from the Neutron diffraction experiments.28 

5 EXCESS FREE ENERGY OF MIXING 
AND CONCENTRATION FLUCTUATIONS 

With the knowledge of the ordering energy (w)  given in Table 2, Eqs 
(37) and (39) are used to compute the excess free energy of mixing (Gxs) 
and the concentration-concentration structure factors, Scc(0), in the 
long wavelength limit. The GXs for CuPb, NaK, CdMg and LiMg liquid 
alloys are plotted in Figure 1. The computed values are in very good 
agreement with the experimental observation.26 GXs for LiMg could not 
be compared as no experimental data exists at T = 887°K. The excess 
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-- PbCU 

+*- NaK 
........_... - MgLi 
-A-+ MgCd 

0.8 L 

Figure 1 Excess free energy of mixing (G",'RT) as a function of concentration (C): 
theory, 0 expt,26 C = C,, (PbCu at 1473°K); ~ ~ ~ ~ theory, x x x 

expkZ6 C = C, (NaK at 384°K); ...... theory, C = CLi (MgLi at 887°K); and - ~ - 

theory, A A A expLZ6 C = C,, (MgCd at 923°K). 

free energy of mixing for CuPb and NaK are positive whereas for LiMg 
and CdMg it is negative. If we recall the values of a1 for these systems 
then we find that the positive values of G"" lead to like atoms pairing in 
the alloys and the negative values correspond to heterocoordination. 

The computed values of S,,(O) are plotted in Figure2. What is 
interesting here is to observe the deviation in Scc(0) from the ideal 
solution values S:!(O) = c( 1 - c). For CuPb and NaK, S,,(O) are greater 
than the ideal values S:f(O). On the other hand SJO) for LiMg and 
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2.0 

1.8 

1.6 

- 
-0 PbCU 

0 --* NaK 
..-. -. .- MgL i 
- 4 M Q C 4  

- 
0 

- 

expt, C = C,, (PbCu at 1473°K); - - - - theory, x x x expt, 
C = C, (NaK at 384°K); ...... theory, C I CLi (MgLi at 887°K); ~ -- ~ theory, 
A A A expt, C = C,, (MgCd at 923°K); -.  -. - refers to SE(0); Experimental SJO) 
refers to the values obtained directly from measured activity (see text). 
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CdMg are less than S:t(O). The positive deviation from the ideal values 
indicates preference for like atoms pairing as nearest neighbour whereas 
the negative deviation corresponds to unlike atoms pairing. 

It is also interesting to compare the computed values of S,,(O) to that 
obtained directly from the observed activity data 

We observe that S,,(O) of CdMg and NaK computed both from Eqs 
(39) and (45) are in very good agreement to each other. Both are 
symmetric about equiatomic composition. But in case of CuPb, the 
directly obtained S,,(O) from the activity data (via Eq. (45)) differ 
considerably to that obtained from equation (39). The earlier values 
exhibit asymmetry about c = i. The asymmetry corresponds to c,, = 
0.35. The observed asymmetry might be due to the size effect (Pb atoms 
are about 2.7 times larger than Cu atoms). it has been 
shown that S,,(O) is very sensitive to the size effect and the latter might 
create asymmetry. Other thermodynamic functions like a and G” are 
not so sensitive to the size effect as S,,(O). This is why agreement for a 
and GXs are almost exact in CuPb but noticeable disagreement exists for 
SJO). The role of size effect on S,,(O) of CuPb liquid alloys shall be 
considered later. 

For LiMg, S,,(O) could not be obtained from equation (45) because 
observed activity3’ data exist only for CLi 2 0.3 and are available at 
irregular concentrations. Recently Singh et ~ 1 . ~ ’  have fitted the ob- 
served activity of LiMg to a seventh order polynomial and then 
evaluated S,,(O). They found that S,,(O) > S::(O) for cLi = 0.1 to 0.32 and 
S,(O) < S:!(O) for CLi 2 0.32. However our values of S,,(O) computed 
from Eq. (39) for Li,,,Mg,,, amount to 0.1464 as compared to 0.142 
obtained by neutron diffraction experiments.” 
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